Geometric Series: Finite and Infinite cases
Bridge/Pretest: Recall the geometric sequence (consecutive terms have a constant ratio). Recall that a series is the sum of a geometric sequence. Give students the bouncy balls for initial investigation.
Learning Outcomes: Understand connection between sequences and series. Be able to compute finite and infinite sums. Begin to formulate an understanding of series convergence.
Teaching Outcomes: Incorporate multiple teaching modes. Prove the formula for calculating a geometric series.
Participatory: Have students bounce different balls. Investigate how successive bounces decrease in size. Lead into the idea that the heights of consecutive bounces form a constant ration = geometric progression. Discuss how to add the total length of 20 (or so) bounces. Prove formula for sum of geometric series. Raise the question: ‘what if the ball never stops bouncing, but continues forever with each subsequent bounce scaled by the same ratio?’ Discuss how powers of r, for r < 1, will approach zero if the exponent is sufficiently large. Segue into infinite series, and display how the formula for the sum will be modified.
Post-Assessment: Have students break into small groups (3-4) to collaborate to complete a problem set. Make some problems tricky by manipulating indices.
Summary: Recap relationship between sequences and series. Discuss infinite series, and the issue of convergence.
thanks to Sam Douglas for this lesson plan
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment